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Continuous methods of control with negative feedback are considered in evasion problems when there is interference. The state 
of the controlled system is characterized by a finite-dimensional vector. The dynamics is described by an ordinary differential 
equation which is linear in the phase vector. The control parameter can occur in the equation in a non-linear manner and, also, 
in the coefficient of the phase vector. The differential equation also contains the unknown interference. It is assumed that the 
control consists of evasion from a convex, closed target set which is specified in the functional space of the trajectories of the 
system. In particular, this formation of the problem contains the case of a target set in a finite-dimensional state space of the 
system at the right-hand end of an interval. Control methods are studied which are described by single-valued mappings, which 
depend continuously on the phase vector. These control methods can use the deviation of the argument. In the case of natural 
constraints imposed on the system, it is shown that, if a certain continuous, negative feedback, control method guarantees evasion 
for any permissible interference, then a control method without negative feedback can be found which also guarantees the 
deviation. © 2004 Elsevier Ltd. All rights reserved. 

In the theory of positional differential games [1-4], the strategy of a game is a function which describes 
the negative feedback in the conflicting controlled system. The properties of strategies which are 
continuous in the phase vector have been discussed in detail ([1, §55], [2, §3], [3, pp. 232-239], and 
[5-8]). Continuous strategies in a differential game with an equation which is linear in the phase vector 
have been considered under the assumption that the coefficient of the phase vector is independent of 
the control. 

A situation is studied below when this dependence can exist and, furthermore, these results are 
extended from the initial problems to certain boundary-value problems. At the same time, we have 
succeeded in giving a fairly simple proof of a theorem on continuous strategies, based on the applica- 
tion of Kakutani's theorem in the space of continuous functions and a lemma on the closure of the 
graph of a multivalued mapping. Here, simplifying assumptions (convexity of the target set, single- 
valuedness of the strategies and certain other assumptions) imposed below are used. Considerations 
on how to discard or relax these simplifying assumptions due to the complexity of the proof can be 
found in [7, 8] which are based on the methods of algebraic topology. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We shall investigate a controlled system which is described by the differential equation 

£c = A(t,  ~ ) )x+g( t ,u ,  v)  

The independent variable t • [to, ~] usually denotes the time, x is the finite-dimensional phase vector, 
v is the control and u is the interference. The geometric constraints u • P, ~ • Q are specified. A target 
set M was fixed in the functional space of the trajectories of the system. It is required to act on the 
system using a control ~ • Q such that the evasion x(') ~ M is guaranteed whatever the form of the 
interference u(t) • P. 

tPrikl. Mat. Mekh. Vol. 68, No. 4, pp. 644-652, 2004. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
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The target set in the space of the trajectories naturally appears, in particular, as a set of the level of 
a non-terminal functional (which, for example, depends on the values of the solution at certain points 
or which contains a maximum, integral, and other non-local operations). Specific examples of differential 
games with non-terminal payment functionals have been considered in [4]. 

A situation is often encountered in which the target set M~ is specified in a finite-dimensional space 
and the evasion game endeavours to satisfy the relation x(O) ~ Mo. This situation can be regarded as 
a special case of the problem with a target set M in the space of the trajectories. It suffices to take as 
M the set of all continuous functions terminating in Mo, that is, which satisfy the condition x(O) e M~. 

It is possible to form the required negative-feedback control v taking into account the measurement 
of the phase vector and, also, to use more general strategies with a memory ~ = u(t, x(-)). It would be 
natural to attempt to treat strategies which possess the property of continuity with respect to the phase 
vector. However, in many problems, the possibilities of such strategies are restricted. 

The following will be shown below for fairly general assumptions concerning the system. If it is possible 
to guarantee evasion by means of a strategy v = v(t, x(.)) which is continuous in x(.), then evasion can 
be ensured using a preset control v = v(t, y(.)), where y(-) is a suitable fixed function. Hence, if, in 
these problems, it is possible to evade using a continuous negative-feedback control, it is also possible 
to evade without negative feedback, that is, using a program. 

The result is illustrated by the simple example of a differential game in which it is required that the 
origin of coordinates is avoided at a finite instant of time and the motion of the system is initially 
determined solely by the interference and subsequently only by the evading player. This leads to 
discontinuous coefficients in the equation. 

Note that the mathematical result presented below is proved for the strategies ~ = "o(t, x(.)), containing 
both hysteresis as well as anticipation. This result also enables one to consider the case not only of the 
initial problem that also of certain boundary-value problems, which turns out to be useful if the 
independent variable has the meaning of a coordinate, rather than time. Strategies with variation of 
the argument and boundary conditions containing the control parameters arise in certain problems of 
the steady-state temperature distributions in a rod, the heating of which is controlled using continuous 
negative feedback (see [9]). 

We shall use the following notation (n is an integer, n _ 1): R n is the space of n-dimensional vectors 
(columns), the norm I" I n of which is fixed, R n x n is the space of n x n matrices with real elements, the 
norm of which I' In × n is matched with the vector norm being considered, that is, lab In <- I A In × n I b In 
for arbitraryA ~ R n ×n b ~ R n, C o is the space of continuous functions, L1 is the space of Lebesgue 
measurable functions with an integrable modulus (with an integral norm Ix(t) In or  Ix(t) In × n for the 
functions x(t) with values in the space of n-dimensional vectors or n x n matrices) and A C  is the space 
of absolutely continuous functions. 

The usual norms of the enumerated functional spaces are used, in particular, 

Hx(')I[AC = IIx(')llc0 + IIx(')llLl 

The sign co corresponds to a convex shell and cl co to a convex closed shell. 

2. SYSTEMS W I T H  C O N T I N U O U S  N E G A T I V E  F E E D B A C K  

We fix certain real numbers to < t) and integers n,p,  q _ 1. If nothing else follows from the context, the 
functional spaces which are used consist of functions defined in the interval [to, O] and which take values 
in R n. For example, C o denotes C°([t0, 0], Rn), unless otherwise stated. We assume that the sets 
P C R p, Q c R q are non-empty and closed. Furthermore, the set P is bounded. The function g : [to, O] x 
P x Q ~ R n satisfies the Carath6odory conditions. This means that, for almost every fixed t, the function 
g(t, u, ~) is continuous in u and v and measurable in t for any fixed u and v. Furthermore, suppose a 
function { : [to, O] -~ [0, ~o), {(.) ~ L 1 is found such that the inequality 

Ig(t, u, V)[, < {(t)  (2.1) 

is true for almost all t s [to, O] and all u ~ P, v e Q. The matrix functionA : [to, O] x Q ~ R n xn satisfies 
the Carathdodory conditions. The limit 

IA(t, v)l,xn < rl(t) (2.2) 

is satisfied for a certain r I : [to, O] -+ [0, oo), q(.) E L l for almost every t e [to, O] and any a~ ~ Q. The 
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set M C C O is convex and closed. Suppose  ~ : [to, O] x C O ~ Q satisfies the Cara th6odory  conditions. 
Thus  v(t,  z(-)) in the case of  a lmost  every fixed n u m b e r  t • [to, 0] depends  cont inuously  on the funct ion 
z( ' )  ~ C O and, for  every fixed funct ion z('), the expression a)(t, z(.)) is measurab le  with respect  to the 
var iable  t. The  mappings  ~ : C O ~ [to, t~] and h : CO ~ R n are continuous.  A n u m b e r  K ___ 0 is found  
such that,  for  every funct ion z( ' )  • C °, the inequali ty 

[h(z(.))[,  < g (2.3) 

is true. 

Remark 1. Actually, the boundedness of h solely in the set M is sufficient. However, the assumption that h is bounded 
in the whole of the space C O enables one to simplify the proof of the theorem presented below to some extent. 

We will now agree  that  g(t, P, r) is the set of  all vectors  of  the  fo rm g(t, ix, r), where  the n u m b e r  t and 
the vec tor  r are  fixed and o~ runs th rough  the set P. 

Theorem. Suppose  the boundary-va lue  p r o b l e m  

~(t) • A(t ,  v(t,  x ( . ) ) ) x ( t )  + cog(t ,  P, v(t ,  x(-)))  (2.4) 

x (O(x( . ) ) )  = h(x( . ) )  (2.5) 

does not  have solutions x(-) • M n AC.  A funct iony( . )  • C o is then found such that  the initial p r o b l e m  

~(t) • A(t, v(t, y( . ) ) )x( t )  + cog(t, P, v(t, y(.))) (2.6) 

x(t~(y( . ) ) )  = h(y( . ) )  (2.7) 

also does not  have  solutions x(-) • M n AC.  

Remark 2. We stress that, in the theorem, the point is that there are no solutions belonging to the set M n AC. 
In the case of the requirements imposed on A, v, g, P, a and h, the problems being considered necessarily have 
solutions inAC. It is simplest to show this as follows. We specify a certain element 13 ~ P and note that, for any 
function y(.), the linear ordinary differential equation 

.~(t) = A(t, o(t, y(.)))x(t) + g(t, fJ, o(t, y(-))) 

has a solution, which obeys initial condition (2.7). This solution also satisfies the initial problem (2.6), (2.7). The 
solvability of boundary-value problem (2.4), (2.5) now follows from the theorem formulated above if the whole of 
the space C o is taken as M. 

Remark 3. Since the bounded closed sets in finite-dimensional space become convex on the right-hand sides of 
the differential inclusions (2.4) and (2.6), the convex envelope is identical to a convex closed envelope. This follows 
from Carath6odory's theorem (see [10, pp. 155 and 158], for example). 

Remark 4. The transition to a convex closed envelope on the right-hand sides of the inclusions (2.4) and (2.6) 
becomes unnecessary if the following requirement for the convexity of the vectogram is satisfied: the set g(t, P, r) 
is convex for almost every t ~ [to, O] and every r e Q. 

The  following is requi red  to p rove  the theorem.  

Lemma on a closed graph. Suppose  we are given a mul t ivalued mapp ing  

[t 0, O] x C O x C 0 ~ (t, x(.), z(.)) ~-~ F(t, x(.), z(.)) c R n 

where  the set F(t, x(.), z(-)) is convex and  closed for  anyx( . ) ,  z(.) • C O and a lmost  every t • [to, O], the 
mul t iva lued m a p p i n g  

C ° × C  ° ~ (x(.) ,  z ( ' ) )  ~-~ F ( t , x ( ' ) , z ( . ) ) c R  n 

is semicont inuous  f rom above for  a lmost  every fixed t • [to, O] and, for  every N > 0, a funct ion 
~/N" [to, O] --+ [0, ~ ) ,  YN(') • L1 is found  for  every N > 0 such that  the inequali ty ]Yln < ~N(t) holds for  
any x(-), z( ' )  f rom the sphere  ][x(')]] c 0, []z(-)[1 c o _< N and for  a lmost  every t and every y • F(t, x('), z(.)). 
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F o r  z( ' )  • C °, we deno t e  the  set  of  all x( . )  • A C ,  which satisfy the  d i f ferent ia l  inclusion 2 (t) ~ F(t, x('), 
z( ' ) )  a lmos t  everywhere ,  by ~2(z(.)). Then,  

C O ~ z( .)  ~ ~ ( z ( . ) )  c C ° (2.8) 

is a c losed graph.  

Remark 5. The conditions of the lemma on a closed graph do not exclude the degenerate case. When this lemma 
is used, additional requirements are necessary which ensure the existence of the functions z(.) for which the sets 
f~(z(.)) are non-empty. 

Remark 6. It is well known that, in the case of a multivalued mapping with non-empty closed images, which acts 
from a metric space into a compact metric space, closure of the graph is equivalent to semicontinuity from above 
(see [11, p. 133], for example). In many cases, this enables one to reformulate the corresponding requirement on 
F in the condition of the lemma. 

Proof of the lemma. Suppose xi(.) ~ x = ( . ) ,  zi(') ~ z=(.) in the space C O when/--* ~ andxi(.) • f)(zi(')) for all 
natural i. It is necessary to show that 

x~(.) • f~(z=(.)) (2.9) 

The convergent sequences xi('), zi(') are bounded by a certain quantity: Ilxi(.)II c °, [Izi(') II c o < N. It follows from 
the requirements which have been imposed that I,~i(t)In < ~'N(t) for all natural i and almost every t. Hence 

t2 

]xi(t2) - xi(tl)l° <- 

for all ta, t2 • [t, O] and natural i. It is clear from the last inequality that it is also satisfied in the case of the limiting 
function x=('). Thus, the function x=(') is absolutely continuous ([12, pp. 141 and 226]) and, consequently, has a 
derivative from L1. 

It is well known [13, pp. 295 and 296] that the weak L1 convergence xi(') ---> x~(')  follows from the pointwise 
convergence 

(.) (9 

t0 I0 

and the boundedness of the norm 112i(.) I IL~ -< II ~u(') II Zl. According to Mazur's theorem [14, p. 120], the weak limit 
of a sequence can be approximated to any accuracy by means of a certain convex combination of a finite set of 
terms of the sequence, selected according to the accuracy which is required. It is obvious that, neglecting a finite 
number of the first terms in a weakly converging sequence, we again obtain a weakly converging sequence. Hence, 
using xi(.), it is possible to construct a sequence Yi(') such that Yi(') -'-> X~(') in the space L1, and, at the time, 

n i 

yi(t) = ~ Pki~k(t) (2.10) 
k = i  

are convex combinations, that is 

n i 

Pki > O, £ Pki = 1 
k=i 

The convergence accordingly follows from the convergence of the sequence Yi(') in the space Lv This means 
that the given sequence converges almost everywhere [12, p. 96]. In order to simplify the notation, we shall agree 
to assume that the sequence Yi(') converges almost everywhere. 

So, on discarding a denumerable family of sets of zero measure from the interval, we obtain the following. For 
almost all t • [to, 0], equality (2.10) is satisfied for every natural i, the sequence yi(t) converges to 2~(t), the set 
F(t, x=(.), z=(.)) is convex and closed, the multivalued mapping 

C ° x C O ~ (x(.), z(.)) ~ F(t, x(.), z( '))  c R n 

is semicontinuous from the above and Xi(t ) • F(t, xi('), zi(')) for all natural i. 
We specify any of these t and a certain e > 0. Suppose Be is a closed sphere in R n of radius ~ with centre at zero. 

By virtue of the semicontinuity from above, a 8 > 0 is found such that, for all x('), z(.) for which I Ix(') -x~  (911c° < 5, 
Ilz(') -z~(.)I lco < 5, we have 



Continuous single-valued strategies in evasion problems 579 

F(t, x(.), z( ' ))  c F(t, x~(.), z®(')) + B E 

(Note that the set F(t, x(.), z(.)) may turn out to be empty for some of these x('), z(.).) Hence, for a certain i0, 
if i >_ io, we have 

Jci(t) ~ F(t, xi(.), zi( ')) c F(t, x~(.), z~(.)) + B e 

The last set is convex as the pointwise sum of two convex sets. Recalling that yi(t) is a convex combination of the 
vectors ki(t) . . . . .  2~,(t), we obtain the following: if i > i0, then the inclusion 

yi(t) ~ F(t, x~(.), z~(.)) + B e 

is satisfied. 
The right-hand side of this relation is closed as the pointwise sum of a closed and a compact set. Also, since 

yi(t) ~ 2=(t), we obtain 

:i~(t) ~ F(t, x~(.), z~(.))  + B e 

Here, the first term is closed and the second term is a sphere of arbitrarily small radius. Hence, 

,,i~(t) e F(t, x~(.), z~( '))  

Since, here, t is almost any t from [to, O], we obtain inclusion (2.9). 

The theorem isproved by reductio ad absurdum. Suppose the conclusion of the theorem is not true. Then, 
for any function, y( ')  s C °, the initial problem (2.6), (2.7) has just one solution x(') ~ M n A C .  We 
denote the set of all absolutely continuous solutions of the initial problem (2.6), (2.7) corresponding 
to a given continuous functiony(.) by ~(y(-)). Hence, the set W(y(-)) n M is non-empty for every function 
y(-) ~ C °. Furthermore, this set is convex by virtue of the linearity of the system with respect to the 
phase vector and the convexity of the set M. 

We now make use of the lemma on a closed graph, putting 

F(t ,  x ( . ) ,  z ( . ) )  = A( t ,  v( t ,  z ( . ) ) ) x ( t )  + cog(t, P, l)(t, z(.))) 

The requirement concerning the convexity and the closedness of the set F(t,  x( ' ) ,  z ( ' ) )  is satisfied. 
It follows from the Carath6odory conditions that, for almost every specified t s [to, O], the mappings 
A( t ,  ~), g(t, u, ~),  v( t ,  z ( ' ) )  are continuous in the remaining arguments. Using the well-known properties 
of multivalued mappings (see [11, pp. 137 and 138], for example), we conclude that, for these values 
of t, the multivalued mapping (x(.), z(')) ~ F(t,  x( ' ) ,  z ( ' ) )  is semicontinuous from above. By virtue of 
inequalities (2.1) and (2.2), the vectors from the set F(t,  x('), z(')) C R n according to the norm do not 
exceed rl(t) I I x ( . ) l l c  0 + for almost all t and all x('), z(') and it is possible to put 7N(t) = 
n(t)N + ¢(t). 

Hence, all the conditions of the lemma are satisfied and (2.8) therefore has a closed graph, where 
f~(y(')) is the set of all absolutely continuous solutions of the differential inclusion (2.6). On taking 
account of the continuity of the mappings of ~ and h in the initial conditions (2.7), we see that 

C ° ~ z(.) ~ Ue(z(.)) c C ° 

also has a closed graph. Finally, by making use of the fact that the set M C C O is closed, we come to 
the conclusion that the graph of the multivalued mapping 

C O ~ z(.) ~-~ W(z(-)) n M c C O 

is closed. 
We will show that the set Uz(.)W(z(')), where the union is taken over all functions z(-) ~ C °, has a compact 

closure in the space C O . 
Actually, if x(.) ~ q~(y(.)) for a certain functiony(.), then, by virtue of relations (2.6), (2.1) and (2.2), 

we have 

I£(t)ln < rl( t ) ix( t ) ln  + ~(t) <)~(t)(1 + Ix(01D; Z(t) = rl(t) + ~(t), )~(.) ~ L l 

for almost all t ~ [to, O]. 
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On taking account of relations (2.7) and (2.3), we obtain 

Ix(t)[ n < K + ;((X)( 1 + Ix(~)l.)d~ 
o( .)) 

for all t s [to, 0]. It follows from this (see [15, pp. 189 and 190], for example) that a number H _ 0 exists 
such that the inequality Ix(t) ln <--n is satisfied for any y(.) e C °, x(-) ~ q'(y(')), t e [to, 0]. Then, 
12(0 In -< g(t)( 1 + H) almost everywhere and, for any q, t2, we obtain 

1' 2 

IX(t2) - X ( t l ) [ n  < (1 + H) !)~('~)d'c 

The compactness of the closure of the set Uz(.)~g(z(-)) C C O follows from the Arzel~-Ascoli theorem 
[13, p. 48] and the properties of the Lebesgue integral [12, p. 141]. 

The closed convex envelope S = cl co(M n Uz(.)W(z('))), where z(.) runs through the whole space 
C °, is a non-empty, convex compactum (see [13, p. 105] and [15, p. 164]). The multivalued mapping 
z(.) ~ q'(z(')) n M translated S into itself and has non-empty, convex values. At the same time, the 
graph of this mapping is closed in the sense of the norm of the Banach space C °. By Kakutani's theorem 
[13, p. 360], just a single fixed pointx(.) ~ W(x(.)) n M exists. This functionx(-) is an absolutely continuous 
solution of boundary-value problem (2.4), (2.5) lying in the set M, which is impossible according to the 
condition of the theorem. The contradiction obtained completes the proof of the theorem. 

Remark 7. If the matrixA(t, ~) = A(t) ,  A( ' )  ~ L 1 is independent of a), the theorem obtained can be extended to 
the case of multivalued strategies. This has been done previously [8, Corollary 2] for initial conditions of the form 
x(to)  = xo. 

Remark 8. Classical motions, that is, absolutely continuous functions which satisfy the differential inclusion being 
considered almost everywhere, are used in the theorem which has been formulated above. In the case of the initial 
conditions X(to) = Xo of the positional strategies v = v(t, x(t)), it is also possible to apply this theorem to structural 
motions [3, pp. 11-19] which are the uniform limits of stepwise motions in refining nets. The constructions here 
will be analogous to the corresponding construction [8, Section 2], where the matrixA(t, x)) = A(t) was independent 
to v (see [8, Corollary 4]). 

Remark 9. Under the assumption that relations (2.5) and (2.7) take the form of the initial conditions x(to) = Xo, 
the theorem presented above can be obtained using results obtained earlier [8]. This method of proving a special 
case of the theorem requires the use of certain concepts in algebraic topology and is based, in the final analysis, 
on the Eilenberg-Montgomery theorem on a fixed point which is associated with groups of homologies. A detailed 
discussion of the corresponding properties of functional-differential inclusions can be found in [7]. 

3. AN E X A M P L E  OF A C O N F L I C T  C O N T R O L  SYSTEM 

We will now illustrate the theorem using a simple differential game. 
Consider the differential equation 

Y: = a ( t ) u + ( 1 - a ( t ) ) v ,  1, 0 _ < t < l  (3.1) 
0_<t<2; a( t )  = 0, l <t<_2 

where the vectors x, u and a9 have the dimension n _ 1. 
When 0 < t < 1, Eq. (3.1) therefore has the form 2 = u and the motion is determined by the 

interference u. When 1 < t < 2, Eq. (3.1) takes the fo rm: /=  a9 and the evading player controls the motion. 
The geometrical constraints [ u I n -< 1, [ v In < I must be satisfied. We consider realizations of the controls 
by measurable functions of the argument t and that the solution is absolutely continuous and satisfies 
Eq. (3.1) almost everywhere A null initial condition 

x(0) = 0 (3.2) 

is specified. In the presence of unknown interference u = u(t) ,  it is required, by choosing the control 
v, to maximize Ix(2)In, where x is the solution of the initial problem (3.1), (3.2). 



Continuous single-valued strategies in evasion problems 581 

If the function x is the solution of problem (3.1), (3.2), then 

1 2 

x(2) = Iudx + Iod'c 

0 1 

In this differential game, it is impossible to guarantee evasion of the origin of the coordinates using 
a preset control v = v(t), where v( ')  ~ L~ and Iv(t)In -< 1 almost everywhere. In fact, it is sufficient to 
put 

2 

u( t ) =- u = - I  u('c )d'c 

l 

Then, [u In -< 1 and x(2) = 0. 
On the other hand, there is a simple method of evasion which only requires a single measurement 

of the phase vector and is described by a continuous mapping. When 1 _< t _< 2, we put v(t) = Ix(l) ] ~lx(1) 
if x(1) ;e 0 and we take v(t) -= v0 if x(1) = 0. Here ~0 0 is a certain fixed vector with the property Iv0 [~ = 1. 
(It is obvious that, when 0 _< t < 1, the choice of v(t) in the unit sphere ]v in -< 1 can be arbitrary.) This 
method of forming ~) ensures that the inequality Ix(2) I n -> 1 is satisfied. It is impossible to guarantee a 
value of Ix(2)I~ greater than unity for any control procedure whatsoever since it can turn out that 
x(1) = 0 and the control v must satisfy the constraint [~)In -< 1. 

Remark 10. According to known results [1, 3], evasion in the differential game being considered can also be realized 
by means of a positional strategy and schemes with a step size which tends to zero. Such constructions have been 
described in detail earlier for another example of a differential game [2, pp. 18-21]. 

We will now show that, in the problem being considered, it is impossible to ensure evasion of the 
origin of the coordinates using control procedures which are continuous with respect to the phase vector. 
We now check that the theorem from Section 2 can be used. We put 

t o = 0 ,  0 = 2 ,  p = q = n 

As P = Q, we take a closed sphere of unit radius with its centre at zero in the space R n. Suppose that 

g ( t , u , v )  = a ( t ) u + ( 1 - a ( t ) ) v ,  ~=1 ,  A-~O, rl=-O, (y -O,  h - O ,  K = 0 

Inequalities (2.1)-(2.3) are satisfied. The set of all points of discontinuity g(t, u, v) is described by the 
relations t = 1, u ~ v. The function g satisfies the Carathdodory conditions. We assume that the set M 
consists of all continuous z : [0, 2] ~ R n such that z(2) = 0. Note that M is convex and closed in the 
space C °. We shall assume that the mapping v(t, z(')), where t is a number and z(') is a continuous 
function, satisfies the Carath6odory conditions and takes values on the sPhere Q. 

The differential inclusion (2.6) takes the form 

2(0  e a( t )P  + (1 - a ( t ) ) v ( t ,  y( . ) )  (3.3) 

It was verified above that, in the problem being considered, it is impossible to guarantee that zero will 
be evaded using preset controls. The initial problem (3.3), (3.2) therefore has a solution x(.) c 
M c~AC for any permissible choice of the mapping v and the functiony(.). The conclusion of the theorem 
from Section2 is not satisfied and the condition of the theorem, that is, that the functional-differential 
inclusion 

2(t) e a( t )P  + (1 - a( t ) )v ( t ,  x( . ) )  

together with the null initial condition (3.2), should have a solution x(.) ~ M ~ A  C for any Carathdodory 
strategy v, is therefore also not satisfied. 

Thus, it has been established that, in the problem being considered, the strategies v: [0, 2] x C o -+ Q, 
which satisfy the Carath6odory conditions, cannot guarantee the evasion of the origin of the coordinates. 
These strategies v = u(t, x(-)) depend onx(.)  as on a function specified in the whole of the interval [0, 
2]. Similar control laws are encountered, for example, in problems associated with the control of the 
heating of a rod using the principle of negative feedback [9], where the independent variable has the 
meaning of a coordinate of a point in the rod. 
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The  class of  Cara th6odory  control  laws a9 = v(t, x(.)), ~) : [0, 2] x C O --~ Q contains, in particular, 
strategies with memory,  which are distinguished by the requi rement  of  unpredictabili ty (or physical 
feasibility). I t  is necessary to impose this if the independent  variable t is the time. This requi rement  
excludes f rom considerat ion control  laws which make  use of  informat ion on the development  o f  the 
process in the future. 

We will now formulate  the requi rement  of  unpredictability. If  the functions x(-), z( ' )  e C o and the 
number  t e [to, t)] are such that  x('c) = z('c) for all "c e [to, t], then the equality "o('c, x( ' ))  = a~('c, z( ' ) )  is 
satisfied for  almost  all x e [to, t]. 

It should also be noted that the class being considered contains, in particular, the positional strategies 
= v( t ,  x(t)), where  the funct ion v : [0, 2] x R n ~ Q satisfies the Cara th6odory  conditions. Hence,  in 

the problem being investigated, Cara th6odory  positional strategies also do not  enable one  to guarantee  
evasion. 

Remark 11. If the discussion is restricted to strategies without an aftereffect, it is possible to consider the given 
game in the shorter interval 1 < t _< 2, assuming that the action of the interference lies in the choice of an initial 
position x(1) which satisfies the condition Ix(l) I n __ 1. It is interesting to compare this with the fact that it is precisely 
when t = I when the measurement of the phase vector is carried out in the evasion procedure described above. 

Remark 12. The existence of a deviation of the argument in the strategies and the discontinuity of the coefficients 
in Eq. (3.1) are among the special features of the simple example which has been analysed. These make it difficult 
to investigate using standard methods. 

This research was supported financially by the Russian Foundat ion  for Basic Research (03-01-00228). 

R E F E R E N C E S  

1. KRASOVSKII, N. N. and SUBBOTIN, A. I., Positional Differential Games. Nauka, Moscow, 1974. 
2. SUBBOTIN, A. I. and CHENTSOV, A. G., Optimization of Guarantee in Control Problems. Nauka, Moscow, 1981. 
3. KRASOVSKII, N. N. and SUBBOTIN, A. I., Game-Theoretical Control Problems. Springer, New York, 1988. 
4. KRASOVSKII, A. N. and KRASOVSKII, N. N., Control under Lack of Information. Birkhfiuser, Boston, 1995. 
5. BARABANOVA, N. N. and SUBBOTIN, A. I., Continuous evasion strategies in game problems on the meeting of motions. 

Prikl. Mat. Mekh., 1970, 34, 5, 769-803. 
6. KRASOVSKII, N. N., Differential games. Approximate and formal model. Mat. Sb., 1978, 107, 4, 541-571. 
7. BRYKALOV, S. A., Conflict control systems and differential inclusion. Differents. Uraveniya, 2002, 38, 3, 298-304. 
8. BRYKALOV, S. A., Continuous strategies in differential games. Differents. Uravneniya, 2002, 38, 4, 453-459. 
9. BRYKALOV, S. A., The existence of temperature distributions close to a prescribed one in some control system. Probl. Control 

Inform. Theory, 1990, 19, 279-288. 
10. ROCKAFELLAR, R. T., Convex Analysis. Princeton Univ. Press, Princeton, 1970. 
I1. BORISOVICH, Yu. G., GEL'MAN, B. D., MYSHKIS, A. D. and OBUKHOVSKII, V. V., Multivalued mappings. InAdvances 

in Sc&nce and Technology. MathematicalAnalysis, Vol. 19. VINITI, Moscow, 1982, 127-230. 
12. NATANSON, I. E, Theory of Functions of a Real Variable. Nauka, Moscow, 1974. 
13. KANTOROVICH, L. V. and AKILOV, G. E, FunctionalAnalysis. Nauka, Moscow, 1977. 
14. YOSIDA, K., FunctionalAnalysis. Springer, Berlin, 1965. 
15. WARGA, J., Optimal Control of Differential and Functional Equations. Academic Press, New York. 1972. 

Translated by E.L.S. 


